

Metallurgy and Material Considerations for Hydrogen Blending

Kasandra Aulenbach

Intermediate High Pressure Engineer - Dominion Energy

Acknowledgments

- Kurtis Fredericks
- Dan MacDonald
- Dr. Jacob Hochhalter
- Dr. Brian Phung
- Julia Denton
- Dr. Rob Flicek

Agenda

- Overview of Hydrogen Blending
- Hydrogen Embrittlement
- Fatigue Crack Growth
- Fracture Resistance
- Considerations for Plastic Pipe
- Machine Learning
- Conclusion

Overview of Hydrogen Blending

- 2-20% hydrogen blend
- More economic and produces less greenhouse gas than transporting via truck
- Avoid capital cost of building new pipelines for hydrogen
- Concerns:
 - Compatibility of pipe materials
 - Processing and pipeline operation
 - Leakage and pipeline integrity
 - Safety and impact to end users

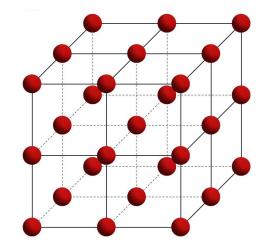


Fig 1. United States Department of Energy opportunities for hydrogen blending [2]

Hydrogen Embrittlement

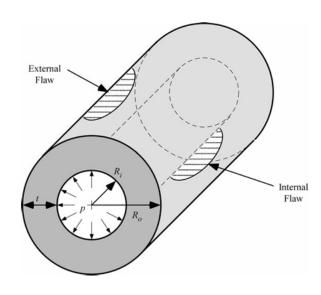
- Phenomenon in metal pipe in which hydrogen atoms enter the metal lattice and induce cracking
 - Environmental hydrogen embrittlement
 - Internal hydrogen embrittlement
- Hydrogen embrittlement contributes to:
 - Fatigue crack growth
 - Fracture resistance

Fatigue Crack Growth Rate

- Stress Intensity Factor (K) describes the stress state at the tip of the crack
 - Function of crack size, part geometry, and applied stress

 K_C = critical stress intensity factor K_I = mode I stress intensity factor K_{IC} = plane strain fracture toughness K_{JIC} = fracture toughness with inclusion of plastic fracture

$$K_{IC} \le K_I = Y \sigma \sqrt{\pi a}$$


Experimental Fatigue crack growth at 3% hydrogen blend in API X52 pipe at 0.1MPa (14.5psi) Computational Fatigue crack growth rate model that depicts hydrogen effects on initial crack size growth rate using textbook SIF calculation

[1] Amaro, R. L., Drexler, E. S., & Slifka, A. J. (2014). Fatigue crack growth modeling of pipeline steels in high pressure gaseous hydrogen. International Journal of Fatigue, 62, 249–257. https://doi.org/10.1016/j.ijfatigue.-2013.10.013

[8] Ronevich, J., & San Marchi, C. (2021). Materials compatibility concerns for hydrogen blended into natural gas (PVP2021-62045). Proposed for Presentation at the ASME Pressure Vessels and Piping Division Conference (PVP2021) In , https://doi.org/10.2172/1884064

Anderson Solution

Internal Flaw:

$$K_{I} = \frac{pR_{o}^{2}}{R_{o}^{2} - R_{i}^{2}} \left[2G_{0} - 2\left(\frac{a}{R_{i}}\right)G_{1} + 3\left(\frac{a}{R_{i}}\right)^{2}G_{2} - 4\left(\frac{a}{R_{i}}\right)^{3}G_{3} + 5\left(\frac{a}{R_{i}}\right)^{4}G_{4} \right] \sqrt{\frac{\pi a}{Q}}$$

External Flaw:

$$K_{I} = \frac{pR_{i}^{2}}{R_{o}^{2} - R_{i}^{2}} \left[2G_{0} + 2\left(\frac{a}{R_{o}}\right)G_{1} + 3\left(\frac{a}{R_{o}}\right)^{2}G_{2} + 4\left(\frac{a}{R_{o}}\right)^{3}G_{3} + 5\left(\frac{a}{R_{o}}\right)^{4}G_{4} \right] \sqrt{\frac{\pi a}{Q}}$$

Increasingly inaccurate for low crack depth/length ratios (long, shallow cracks)

Fracture Resistance

- Fracture toughness resistance of a pipeline material to crack propagation
 - Function of steel composition, microstructure, and temperature
 - Decreases in the presence of hydrogen

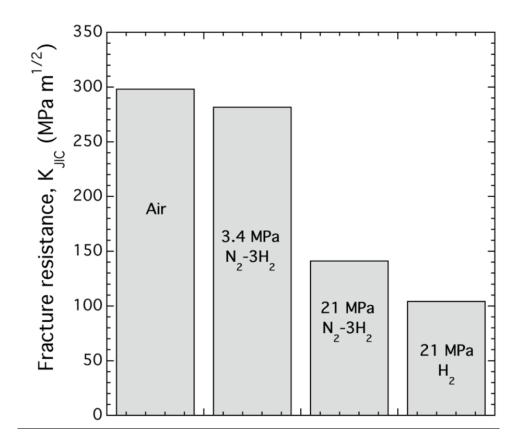


Fig 2. Fracture resistance of X52 pipeline steel in gaseous hydrogen environments [8]

Crack Propagation

- Flaw #1 –smallest defect that has 90% probability of detection with ILI-EMAT device
 - Fails by plastic collapse at same pressure in hydrogen as natural gas
- Flaw #5 –through-crack of pipe wall thickness
 - Fails by elastoplastic fracture at a lower pressure in hydrogen than natural gas
- Fracture probability is dependent on crack size

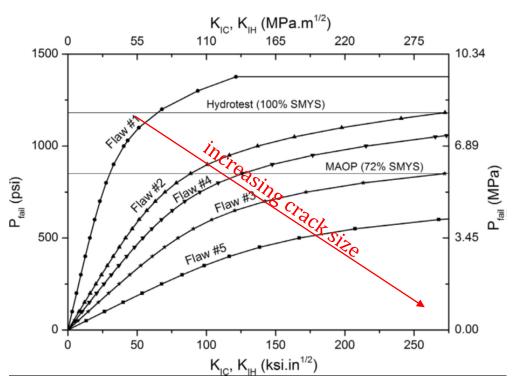
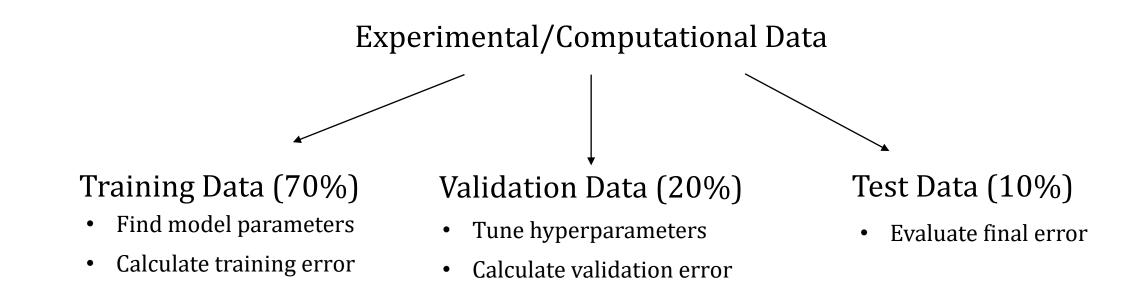


Fig 3. Failure pressure of a pipeline with varying flaw sizes vs. fracture toughness [5]

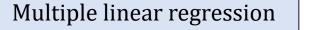

Considerations for Plastic Pipe

- Hydrogen leakage through pipe walls
 - Low density
 - High diffusivity
- PE 2306 (Aldyl-A)
 - Increased susceptibility to brittle fracture


Machine Learning Overview

Create interpretable models that accurately describe data

Build upon linear algebra, statistics and probability, optimization, and differential equations



- Adjust hyperparameters until sufficient training and validation errors are reached
- Calculate final error to assess model accuracy

Repeat process with different training/validation/test data divisions to obtain the best model (cross-validation)

Surrogate Models to Predict SIF in Offshore Piping

Polynomial regression

Gaussian process regression

Neural network

Support vector regression

Relevance vector regression

Surrogate Models to Predict SIF in Offshore Piping

Multiple linear regression	Polynomial regression	Gaussian process regression
Neural network	Support vector regression	Relevance vector regression
, A., Chandima Ratnayake, R. M., & Sankararaman, S. (2017). Comparison of various surrogate models tress intensity factor of a crack propagating in offshore piping. Journal of Offshore Mechanics and	Western Gas Measurement Short Course 2024	4 14

$\hat{y} = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + ... + \beta_n x_n + \epsilon$ goal is to find the coefficients:

Machine Learning Models

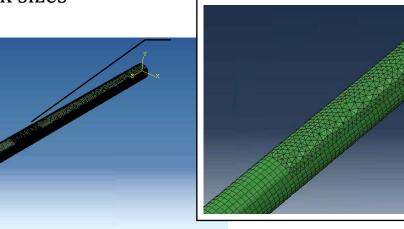
Polynomial Regression

 $\beta_0, \beta_1, \beta_2 ... \beta_n$

where n is the degree of the polynomial and ε is the error term

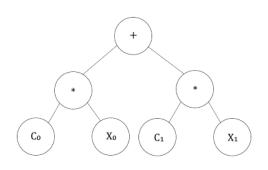
Gaussian Process Regression

 $p(y_p|x_p, x_T, y_T, \theta) \sim N(m \cdot s)$


where θ is the hyperparameters, m is the mean, and s is the covariance matrix

Adaptive Gaussian Process Regression Model

- Adaptive training based on selected data points with largest variance
 - Produces more accurate model


Generate training data from 1000 pipe models with varying wall thickness and crack sizes

Genetic Programming Based Symbolic Regression (GPSR)

• Learn mathematical expressions for K calculation

AGraph

Learn a more accurate alternative to the Anderson solution for K calculation that can be utilized for a variety of applications

Conclusion and Further Work

Hydrogen Blending

- Low-cost and efficient way to transport hydrogen
- 2-20% hydrogen blend
- Hydrogen embrittlement
 - Increase fatigue crack growth rate
 - Decrease fracture toughness
- Minimal concerns for polyethylene pipe
 - More research is needed to determine the lasting effects of hydrogen on polyethylene pipe

Machine Learning

- Tool to assess cracking in natural gas pipelines using a hydrogen blend
 - K calculation
- Many different algorithms with varying accuracy
- Further research needed to assess machine learning algorithms for this specific application and alternative K calculations

Questions