Hydrogen Blending

In the Natural Gas Industry

Alyssa Wahlin, PE

Why Hydrogen?

- Hydrogen is an energy carrier, much like natural gas
- The hydrogen molecule has no carbon
- When burned, the emissions do not have green house gases
- Can be considered renewable

Producing Hydrogen

- Steam Methane Reforming (SMR)
 - Most common production method today
- Electrolyzer
 - Alkaline
 - Proton Exchange Membrane (PEM)
 - Can be considered renewable
- Pyrolysis
 - Solid carbon is a byproduct

- Electricity flows through water. If this electricity comes from renewable sources, the hydrogen produced is also considered renewable.
- 2. This process separates water into hydrogen and oxygen. They move apart because they carry opposite electrical charges.

 The oxygen is released into the air.

+

4. The hydrogen is collected and can be mixed with natural gas for various uses.

Hydrogen Bubbles

form on the cathode.

Natural Gas and Hydrogen

	Natural Gas (Methane)	Hydrogen
Heating Value	950 Btu/scf	325 Btu/scf
Flammability Range	5-15%	4-75%
Max Flame Speed	0.44 m/s	3.25 m/s
Molecular Weight	16.04 g/mol	2.02 g/mol
Density	~1.8 times lighter than air	~14 times lighter than air

Hydrogen Research

- A Note:
 - There is a lot going on related to hydrogen and hydrogen blending right now
 - Not all the reports for the research are publicly available
 - Most discussed here is within North America, but lot is going on globally as well.

Material compatibility

- Embrittlement
 - Higher risk with high tensile strength steel (X70 and higher)
 - Higher risk with high pressures
 - Research ongoing to better determine limits
- In-service welding
 - Early research indicates additional guidelines can limit risk

Material compatibility

- Plastic Pipe
 - Less overall research focused here
 - No known material incompatibilities with hydrogen
 - Hydrogen more likely to seep through, but at still negligible amounts

End-Use Applications

- Most end-use research on residential applications
- At low blends:
 - No major change to gas combustion properties
 - Low risk of flashback
 - No change to NO_x emissions

• Minimal research so far with commercial/industrial

Leak Susceptibility

- Research is showing hydrogen will not leak out of gas tight fittings
 - Testing included blends up to 40% Hydrogen
- Hydrogen does not preferentially leak

Leak Survey

- For lower blends:
 - Hydrogen does not seem to affect methane specific survey instruments
 - Minimal change in overall gas properties, including flammability range

Figure 16: Ignition limits of methane, hydrogen and natural gas / hydrogen blends with air [15]

Leak Survey

- CO Detectors
 - Known cross-sensitivity with hydrogen
 - Research is starting to explore other sensor types

North American Blending Pilots

- ATCO
- CenterPoint Energy
- Dominion Energy
- Enbridge
- Hawaii Gas
- National Grid
- New Jersey Resources
- New Mexico Gas

- NiSource
- Northwest Natural
- PG&E
- Puget Sound Energy
- SoCal Gas
- Southwest Gas
- Xcel Energy
- And others!

Dominion Energy Utah Pilot

 Efforts were focused on confirming existing research and gaining operational experience with blends up to 5% hydrogen

Dominion Energy Utah Pilot

- Testing fell into different categories:
 - Appliance safety
 - Gas Quality
 - NO_x Emissions
 - Leak Survey
 - Materials

Current Status

- Hydrogen research and blending pilots are continuing to build
- Recently announced Hydrogen Hubs expected to help build clean H2 industry

Future

- Hydrogen could be produced during high renewable electric production periods and then blended with natural gas
- Europe is starting to research and pilot 100% Hydrogen

Thank you!

- Hydrogen Blending in Delta Utah | Dominion Energy
- HYREADY (dnv.com)
- <u>In-service welding</u> of methane/hydrogen mixture pipelines (dnv.com)
- <u>NREL Technical Report (NREL/TP-5600-51995)</u> <u>"Blending Hydrogen into Natural Gas Pipeline</u> <u>Networks: A Review of Key Issues"</u>
- <u>NYSEARCH Natural Gas RD&D</u>
- Home Operations Technology Development (OTD)
- <u>THyGA | Testing Hydrogen admixture for Gas</u> <u>Applications (thyga-project.eu)</u>

• Contact Information:

- Alyssa Wahlin
- <u>Alyssa.Wahlin@DominionEnergy.com</u>

Links to Individual Company Efforts

- ATCO: Fort Saskatchewan Hydrogen Blending Project (atco.com)
- CenterPoint Energy: <u>CenterPoint Energy launches green hydrogen project in Minnesota (prnewswire.com)</u>
- Dominion Energy Utah: <u>Hydrogen Blending in Delta Utah | Dominion Energy</u>
- Enbridge: <u>Clean hydrogen enters the Markham energy mix Enbridge Inc.</u>
- Hawaii Gas: <u>https://www.hawaiigas.com/clean-energy/decarbonization</u>
- National Grid: One of US' first green hydrogen blending projects launches | National Grid Group
- New Jersey Resources: <u>NJR_HydrogenProject_Factsheet_01d1.pdf (njrsustainability.com)</u>
- New Mexico Gas: <u>FOR IMMEDIATE RELEASE (nmgco.com)</u>
- NiSource: Future of Energy NiSource
- Northwest Natural: <u>Hydrogen NW Natural</u>
- PG&E: <u>Hydrogen to Infinity (pge.com)</u>
- Puget Sound Energy: <u>PSE | Hydrogen pilot</u>
- SoCal Gas: <u>H2 Blending</u> | SoCalGas
- Xcel Energy: <u>Hydrogen-Natural Gas Blending Demonstration Project (xcelenergyadamsdemo.com)</u>