Line Heater CO2 Emission Reduction

By Sean Carron, P.Eng Combustion Solutions Inc

Why Line Heaters - Joule Thomson Effect

A sudden drop in pressure causes a drop in temperature

H2 can have a big impact on the JT coefficient

COMBUSTION SOLUTIONS INC.

Heat Capacity of Natural Gas vs Temperature and Pressure

 $Q = (m) (C_{PAvg}) (T_2 - T_1)$

Quick Example

- 6" line 10MMSCFD (11,808 m3/hr) @ 50F(10C) and 1100psi (7.65 MPa).
- Mass flow ~ 19,000 lbs per hour 8,600 (kgs/hr)
- Pressure drop to 100 psi (7 Mpa) → temperature drop would be ~ 65F (36C) = Freezing of regulator
- To heat the gas requires on average 0.58 Btu/lb/F (2.4 KJ/kg/C)
- Total heat is therefore 19,000 * 0.58 * 65 = 740,000 Btu/hr (220kW)
- Realistically would size for 1,000,000 Btu/hr

Heating options

- Electric heat
- Infra Red Radiant
- Glycol/Water bath line heater
- Vacuum Glycol / Steam line heater

Electric heater options

- >95% efficient, zero emissions
- But !!!!!

Since 60% of electrical energy comes from hydrocarbon sources, we must include the powerplant emissions in our global warming calculations.

Sources of U.S. electricity generation, 2021 Total = 4.12 trillion kilowatthours 9.2% wind hydro* 6.3% renewables 20% solar 2.8% biomass 1.3% petroleum* .5% 0.4% geothermal nuclear 19% coal 22% natural gas 38%

Source: U.S. Energy Information Administration, *Electric Power Monthly*, February 2022, preliminary data Note: Includes generation from power plants with at least 1,000 kilowatts of electric generation capacity (utility-scale). *Hydro is conventional hydroelectric. *Petroleum includes petroleum liquids, petroleum coke, other gases, hydroelectric

Electrical heat revisited

- A modern simple cycle power plant is ~40% efficient (fuel energy to electrical energy)
- A combine cycle power plant can be up to 60% efficient.
- For each kW of energy used for heating loads, the power plant must produce the equivalent of 2kW of CO2 emissions.
- The use of electric heat will result in a net increase in CO2 emissions.
- Until the electrical grid is carbon free, using electricity for heating natural gas makes no sense.

Gas Fired Equipment

- For every molecule of CH4 burned completely, one molecule of CO2 is created.
- To reduce CO2, the only option is to reduce fuel consumption or switch to H2
- Our primary objective is to reduce CO2 emissions while preventing the line from freezing.
- Therefore efficiency must be maximized

Efficiency (function of stack temp and %O2)

• 85% is a common upper limit

Combustion Efficiency for Natural Gas

		Combustion Efficiency										
Exce	ss, %	Flue Gas Temperature Minus Combustion Air Temperature, °F										
Air	Oxygen	200	300	400	500	600						
9.5	2.0	85.4	83.1	80.8	78.4	76.0						
15.0	3.0	85.2	82.8	80.4	77.9	75.4						
28.1	5.0	84.7	82.1	79.5	76.7	74.0						
44.9	7.0	84.1	81.2	78.2	75.2	72.1						
81.6	10.0	82.8	79.3	75.6	71.9	68.2						

Assumes complete combustion with no water vapor in the combustion air.

CSI COMBUSTION SOLUTIONS INC.

Flue Gas Condensation

- Efficiency can be improved beyond 87% but requires condensing the water.
- Flue gas condensate is acidic with pH of ~3.
- It also must be drained continuously
- ~1gallon per 100,000 Btu

Types of gas fired heaters

- Catalytic infra red radiant heaters
- Indirect glycol/ water bath heaters
- Vacuum Steam heaters

Heat Transfer is the key to efficiency

Typical values of the convective heat transfer							
Process (W/m ² · K)							
Free convection							
Gases	2 - 20						
Liquids	50 - 1000						
Forced convection							
Gases	25 - 300						
Liquids	100 - 40,000						
Convection with phase change							
Boiling or condensation	2500 - 100,000						

Typical Heat Transfer Coefficients

Type	Application	Overall Heat Tra	nsfer Coefficient	
.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	rippiloudin	W/(m ² K)	Btu/(ft ² °F h)	
	Gases at atmospheric pressure inside and outside tubes	5 - 35	1 - 6	
Tubular, heating or cooling	Gases at high pressure inside and outside tubes	150 - 500	25 - 90	
	Liquid outside (inside) and gas at atmospheric pressure inside (outside) tubes	15 - 70	3 - 15	Firetube
	Gas at high pressure inside and liquid outside tubes	200 - 400	35 - 70	Gas Coi
	Liquids inside and outside tubes	150 - 1200	25 - 200	
	Steam outside and liquid inside tubes	300 - 1200	50 - 200	
Tubular condensation	Steam outside and cooling water inside tubes	1500 - 4000	250 - 700	
Tubular, condensation	Organic vapors or ammonia outside and cooling water inside tubes	300 - 1200	50 - 200	
	steam outside and high-viscous liquid inside tubes, natural circulation	300 - 900	50 - 150	
	steam outside and low-viscous liquid inside tubes, natural circulation	600 - 1700	100 - 300	
	steam outside and liquid inside tubes, forced circulation	900 - 3000	150 - 500	

CFD study of bath style line heater

			· · ·								
Excess	%	Net Stack Temperature									
Air	02	200°F 93°C	300°F 149°C	400°F (204°C)	500°F (260°C)	600 <i>°F</i> (315 <i>°</i> C)					
9.5	2.0	85.4	83.1	80.8	78.4	76.0					
15	3.0	85.2	82.8	80.4	77.9	75.4					
28.1	5.0	84.7	82.1	79.5	76.7	74.0					
44.9	7.0	84.1	81.2	78.2	75.2	72.1					
81.6	10	82.8	79.3	75.6	71.9	68.2					

Combustion Efficiency (%) – Natural Gas

For half the firetube, there is very little heat transfer. Typical exhaust temperatures are 600F to 700F.

How to improve the line heater efficiency

- Increased liquid heat transfer coefficients with phase changes
- Increase flue gas side surface area with finned tubes
- Operate at a vacuum to reduce boiling temperature.
- Operate close to the flue gas dewpoint (55C).

Heater Off Cycle Losses

- Similar to a residential tank type water heater
- When a burner is not firing, it becomes a radiator.
- Continuous pilots keep airflow through the firetube.
- Seasonal loads require <50% of the heat 80% of the time. Most heaters are off most of the time.
- Effective Energy Use Factor ~ 60%

Efficiency effects on CO2 emissions

- Using a line heater with an energy use factor of 0.6 produces an equivalent of 1.67X CO2 equivalent per kW of heat
- Using a line heater with an energy use factor of 0.85 produces an equivalent of 1.18 X CO2 equivalent per kW of heat
- by simply utilizing more efficient line heating technology, CO2 emissions can be reduced by 40%.

Model Number	Ra Non	ted ninal	DOE Rated	BTU/Hr.	LP BTU/Hr.	First Hour	Uniform Energy		Recovery at 90°F Rise*		Model Number	Rated Nominal	DOE Rated	kW	LP kW	First Hour	Uniform Energy	Reco 50°C	very at Rise*	
	U.S. Gal.	ume Imp. Gal.	Storage Volume Gal.	Input	Input	Rating Gal.	Factor	U.S. GPH	lmp. GPH	LP U.S. GPH	LP Imp. GPH		Volume Liters	Storage Volume Liters	Input	Input	Rating Liters	Factor	Liters/ Hour	LP Liters/ Hour
RG130T6N*	30	25	29	27,000	27,000	46	0.54	29	24	29	24	RG130T6N*	114	110	7.9	7.9	174	0.54	110	110
RG230T6N*	30	25	29	32,000	31,000	60	0.60	34	28	33	23	RG230T6N*	114	110	9.4	9.1	227	0.60	129	125
RG230S6N	30	25	29	30,000	26,000	49	0.54	32	37	32	27	RG230S6N	114	110	8.8	7.6	186	0.54	121	121
RG140T6N*	40	33	38	34,000	34,000	64	0.59	37	31	37	31	RG140T6N*	151	144	10.0	9.9	243	0.59	139	139
RG240T6N*	40	33	38	40,000	36,000	75	0.64	43	36	34	33	RG240T6N*	151	144	11.7	10.6	284	0.64	163	129
RG240S6N*	40	33	38	40,000	38,000	69	0.58	43	36	41	34	RG240S6N*	151	144	11.7	11.1	262	0.58	163	155
RG150T6N®	50	42	47	34,000	34,000	75	0.63	37	31	37	31	RG150T6N*	189	178	10.0	9.9	284	0.63	139	139
RG250T6N*	50	42	48	40,000	36,000	81	0.63	43	36	41	34	RG250T6N*	189	182	11.7	10.6	307	0.63	163	155
RG250L6N	48	40	47	40,000	38,000	77	0.63	43	36	41	34	RG250L6N	182	178	11.7	11.1	292	0.63	163	155
RG250S6N*	50	42	47	50,000	48,000	75	0.63	54	45	52	45	RG250S6N*	189	178	14.7	14.1	284	0.63	204	197

A standard Utherm heater is comprised of the following two separately registered components: Firecage Process Coil

OMBUSTION SOLUTIONS INC.

ASME Section VIII Division I Indirect-Fired Process Coil

Heater Mechanical Overview

Utherm Firecage

- COMPONENT FUNCTION: TRANSFER RADIANT HEAT FROM BURNER TO 50/50 WATER/GLYCOL MIXTURE WITHIN FIRECAGE
- DESIGN TO: ASME Section IV / ASME Section VIII
- EXTERNAL DESIGN PRESSURE: 103kPag
- VACUUM DESIGN PRESSURE: 100kPag
- NORMALLY OPERATES AT SLIGHT VACUUM TO SLIGHTLY POSITIVE PRESSURE
- DESIGN TEMPERATURE: -20C TO 100C
- MATERAILS OF CONSTRUCTION: SA516 GR.70N / SA179 / SA105N / SA106 GR.B
- OVERPRESSURE PROTECTION: RUPTURE DISK WITH 69kPag SETPOINT (NOT SHOWN)

COMBUSTION SOLUTIONS INC.

Utherm Process Coil

- COMPONENT FUNCTION: TRANSFER HEAT FROM 50/50 WATER/GLYCOL MIXTURE WITHIN FIRECAGE TO THE PROCESS COIL / PROCESS FLUID
- CRN NUMBER: L0275.1

- DESIGN TO: ASME B31.3; INDIRECT FIRED HEATER COIL
- DESIGN PRESSURE: 18,000kPa
- DESIGN TEMPERATURE: -20C TO 100C
- MATERAILS OF CONSTRUCTION: SA105N / SA106 GR.B / SA234 GR.WPB

Typical high efficiency line heater installation

Radiant Metal Fiber Matrix Burners

Ultra Low Emissions Burners - Developed by Shell & Bekaert in 1987

Fully Pre-Mixed (no secondary air)

The radiant metal fiber matrix burner is designed to operate in fully premixed mode which no secondary air. This is ideal for natural draft process heaters and reduces off cycle losses.

Low Pressure Drop

The radiant metal fiber matrix burner provides a very low back pressure (<0.3"wc) which is ideal for natural draft heaters utilizing standard mixers.

High Turndown ratio

The firing intensity of a metal fiber burner can easily be modulated between 100 kW/m^2 (31,800 Btu/h.ft²) and 5000 kW/m^2 (1,590,000 Btu/h.ft²) with a gradual transition between the different modes. The Utherm heater is provided with a 5:1 turndown in the range between 140kW/m² and 1000 kW/m².

Low Noise

An added bonus of the fiber matrix burner is the noise free and resonance-free combustion. Because of the textile structure of the metal fibre burner there is no flame front resonance. The flame is laminar through most firing rates of the Utherm heater.

Low Emissions

Low NOx and CO emissions

Surface combustion with the metal fibre burner leads to extremely low emissions of NOx, CO and unburned fuel.

As a result of the intimate contact between the gases and the fibres, flame temperature is significantly reduced leading to far lower NOx levels than with other burner technologies.

Utherm heaters typically produce <30ppm NOX an CO and reduce CO2 by 30%

120 110 100 90 80 NO_x (ppm) 0% O_2 10% excess air 70 20% excess air 60 🔺 30% excess air 50 56% excess air 40 30 20 500 1000 1500 2000 2500 3000 3500 4000 n Combustion intensity (kW/m²)

NO_x emissions with different excess air ratio and firing rates

Utherm Natural Draft Fired Heaters

- High efficiency typically 80% to 95% of LHV depending on process temperature.
- Low Emissions can provide to <30ppm Nox

	T	9	5	t()	ť	35	0	>	0	-	-					 -
			1000	Τe	25	to)	÷.;	35	10		X	_				
SN		1	0	15	58	00	96	8	1	U	5	a					
co	M	81	1:	53	I	0	ų	50)i	U	T	Ī		15	;		 -
NO	N	91	vij	Ξ		0	5	¥	2	Z	-		5	2			 -
01	/1	0.	4,	۲C)4			1	10	I R	4	1		1			
۶u	e.	1	1	ħ	a	tL	11-	• 9)a	S							
1	1:	1.0017	81330			o pp	の之間、前	1-000	1 1 20 20	DUT.	9	21	1			2	
63.00	1 36 30	(3a ()					前前前とえ	C Z Z UU		2 X f c	10	1111	9	na	C-i-	36	
1 1	1.91 3	2	161 5		1	in	10 10 10 10	0.000 1	Land o	Π) 10 5 5	5.				-	3	
iea	t		+	r	ar	ns	f.	ō	F		-	_			0		 -
		-	-	-;				•				-		_	_		 -

Running Utherm Mixers with Natural Gas and Hydrogen Mixture

By Latif Bouhadji, Ph.D., P.Eng

NG-H₂ Mixture Shop Test

Gas Composition (%Mole) & Calculated Properties

	Natural G	Gas (%)	Natural Gas (7	o%)]	Hydrogen (30%)		
	H2	0		H2	30		
	CO2	0.7		CO2	0.49		
	N2	2.4		N2	1.68		
	CH4	93.4		CH4	65.38		
	C2H6	2.7	С	2H6	1.89		
	C3H8	0.6	C	G3H8	0.42		
	C4H10	0.2	C	4H10	0.14		
Ga	as Properti	es	Natural Gas	Nat	tural Gas-Hydroger		
M	W (g/mol)		17.15	12.6	51		
De	ensity (lb/S	ft³)	0.0453	0.0	0.0333		
Sp	ecific Gravi	ity	0.6	0.44	0.44		
C		-		- • 1	•		
S p	ecific Heat	Ratio	1.31	1.34			
Sp LE	ecific Heat L / UEL	Ratio	1.31 5.0 / 15.3	1.34 4.8	/ 20.1		
SP LE LF	ecific Heat L / UEL IV (Btu/Sft [:]	Ratio	1.31 5.0 / 15.3 917	1.34 4.8 724	/ 20.1		
SP LE LF HI	ecific Heat L / UEL IV (Btu/Sft [:] HV (Btu/Sft	Ratio ³) ²³)	1.31 5.0 / 15.3 917 1,017	1.34 4.8 724 809	/ 20.1		

Mixer Gas Orifice Sizing Calc.

	Natural Gas	Natural Gas-Hydrogen (70/30)
Heat Release (Btu/h)	500,000	500,000
Gas Pressure (psig)	20	20
Mass Flow (lb/h)	24.73	23.02
Flow (Sft ³ /h)	546	691
Mixer Gas Orifice	1/8"	#30 (0.1285")
Gas Orifice Cd	0.94	0.94

CFD ANALYSIS: NG-H₂ Mixture Shop Test

COMBUSTION SOLUTIONS INC.

COMBUSTION SOLUTIONS INC.

NG-H₂ Mixture Shop Test

	NG (70 % Volume)	Hydrogen (30% Volume)	Mixture
Volume Flow (Scfh)	483	207	690
Gas Density (lb/Sft ³)	0.0453	0.0053	0.0333
Gas Mass Flow (lb/h)	21.9	1.1	23
Heating Value (Btu/Sft ³)	917	275	724
Stoich. Air (Volume Basis)	9.55	2.38	7.40
Heat Release (Btu/h)	443,108	56,893	500,000
Inlet Pressure (psig)	25	25	-
Orifice Size	#55	#30	#30

CFD Results: NG-H₂ Mixture Shop Test Model

NG-H₂ Mixture CFD Results

	NG-H ₂ Mixture	
Gas Mass Flow (lb/h)	25.6	25.6
Mixture Pressure (inwc)	0	1.1
Air Mass Flow (lb/h)	696.5	607
AFR	27.2	23.7
Excess Air (%)	61	40
Gas Flow (Sft ³ /h)	769	769
Air Flow (Sft ³ /h)	9,164.5	7,987
Air Flow (Sft ³ /min)	153	133

NG-H₂ Mixture Shop Test

NG-H₂ Mixture Shop Test

Decreasing Natural Gas Pressure until Flash Back

Conclusions

To reduce CO₂ emissions, look at the entire energy distribution chain. With 60% of the grid supplied by fossil fuels, electric heaters produce more CO₂ than a natural gas fired heater.

Increasing heater efficiency is the most effective way to reduce CO₂ emissions. Efficiency should be >85%

Efficiency is increased through higher heat transfer coefficients on the flue gas side (fins) and through phase change on the heat medium side.

Efficiency must consider off cycle losses which can have a significant impact – energy factors vs just efficiency.

COMBUSTION SOLUTIONS INC.